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We propose a method for the approximate soluti --I of the Bellman equation for 
problems of optimal control of the final state o I system containing Gaussian 
white noise of small intensity. We examine the case when the solutions of the 
deterministic Bellman equation, corresponding to a noisefree system, have discon- 
tinuities of the first kind in their own values or in the values of their derivatives. We 
have found the necessary and sufficient conditions for the synthesis of optimal control 
of a system additively containing Gaussian white noise to coincide with the corre - 

sponding synthesis for the deterministic problem. We prove estimates on the er- 
ror in the method and we cite examples. Earlier the author had examined an 
analogous method for a restricted class of optimal control problems [ 11. Certain 
methods for the approximate solution of the Bellman equation were studied in 
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[Z-4] under the assumption that the deterministic Bellman equation has a suffi- 
ciently smooth solution. Certain exact solutions and estimates were obtained in 

l-51. 

1. Strtemrnt of the problem, The Ballmrn equ&tlon. Letthe equa- 
tion describing the motion of a system have the form 

dx / dt = a (t)u $ Eb (t)E (1.1) 

Here t E [O, 2’1 , z is an n-dimensional vector, u is a vector-valued control func- 

tion of dimension ~2 (m < n) taking values in a closed convex m-dimensional set u, 

u E U, E is an n-dimensional random perturbation vector, a (t) is an ( rz x m )- 
matrix, b (f) is an ( n x n )-matrix nonsingular for all t E IO, 2’1 , e is a small 

parameter. The elements of matrices a and b are assumed to be smooth functions of 

their arguments. As the random perturbation vector we consider a Gaussian white noise 

of unit intensity. Knowing the initial position J: (0) = x0, we are required to construct 

a control method which minimizes (or maximizes) the mean of some function 

J = 9 [z (t)l 0.2) 

at the final instant t = T. It is assumed that the function 9 (z) is bounded for all va- 
lues of 2. 

Note. Problems in which the equation of motion is given as 

ti/dt = A (t) iz + a (t) u + Eb (t) E 

reduce to problem (1.1) by a change of variables. Here A (.t) is an ( n X n )-matrix 

with coefficients depending smoothly on t E [O, T]; a (t), b (t), U, E, 8 have the 
same meaning as in Eq. (1.1). 

The Bellman equation for problem (1.1) has the form [2-51 

(1.3) 

S(x, 0) = ‘II, (2) (sp(bb’&,) = j$, bk&sk) 
i,k=l 

Here S (t, z) is the Bellman function, T - t = z is reverse time, the subscripts on 
function S denote the taking of the corresponding partial derivatives, aik (i = 1, . . . , 
n, k = 1, . . . . m) are the elements of matrix a. &cause matrix b is nonsingular, 

i b$&>o, h = (h,, . . . vL)#‘A tE[O,Tl 

Thus, the problem posed reduces to solving a Cauchy problem for the parabolic equation 

(1.3). 

2. Regulrrirrtion of the determinirtic problem. Definition of 
the chrrrcterirtic curves of the determfnirtic equation. We consider 
a deterministic problem (1. l), i. e. the problem without random perturbations, 

dx/dt = a (t) u, t E [O, Tl, u E U (2.1) 
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Here a is the same matrix as in (1.1). The functional to be minimized at the final in- 
stant has the form 

J” - $ IX (T)l (2.2) 

We assume that the function S” corresponding to the deterministic problem (2. l), (2.2) 

is known and 

‘” iz7 r) = 

s”r (z, z), A” (t, z) < 0 

Sq2 (x, zj, A” (x, z) > 0 

Here A’(z, r) is some continuous function of its arguments. The functions Sok (k = 

17 2), continuous and thrice differentiable outside set A” = 0, are arranged so that 

the function S” has discontinuity of the first kind in its own values or in the values of 

its first two derivatives on the surface A” = 0. It is clear that such a case corresponds 

to a discontinuous initial-value function I# (z). We assume further that the function S” 

is bounded for all values of 5. 

Let us formally write out the Bellman equation for the deterministic problem 

The boundary-value problem (2.3) with discontinuous initial data should be understood 

in the generalized sense [6]. 

For the subsequent constructions an essential role is played by the concept of charac- 

teristic curves of Eq, (2.3), which in the given case requires an additional clarification. 

From optimal control theory it is well known (see fl]) that under specific constraints on 

the smoothness of the functions S” the characteristics of the deterministic Bellman equa- 

tion are the optimal trajectories of the motion of problem (2. l), (2.2). However, a direct 
application of the maximum principle to the deterministic problem (2.1) is impossible 

in view of the discontinuity of the functional (2.2) on the final value, which leads to 

ambiguity in the choice of the optimal control and of the optimal trajectories. 

Example 1. Let us clarify what we have said by the example 

dx/dt = u + E, IulSk 

where x is a scalar, f is Gaussian white noise of unit intensity. We are required to con- 
struct a control method which would maximize the probability of hitting onto the set 

[-I, 11. The corresponding deterministic problem with E = 0 has the final-state func- 
tional 

which we are required to maximize for t = 2’. We can convince ourselves that the re- 
gion from which we can reach the segment [-I, I] at the instant T is given by the 
inequality I x 1 < k (T - t) + 1. Let us consider the optimal trajectories which pass 
through the point t = t,), Z= m located inside theattainability region. It is clear that there 
can be many methods for hitting onto the segment [-I,11 from the point (a,, to) . 
For example, if the point (% to) lies inside the set I 5 I < k (T - t), we can reach the 

set x = 0 at the instant tl = t,, - m / k by setting u = k and then to set u = 0. We 
can reach the set 5 = k (2’ - t) + 1 at the instant tz = I/& - (IO - 1) / 2k by setting 
u = --k and next set u = k , etc. The control is not defined outside the attainability 
set since any possible control does not change the value of the final-value functional 
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(2.2). 
In order to select uniquely the synthesis of the optimal control u’(z, t) and the cor- 

responding field of optimal trajectories, and by the same token to determine the charac- 
teristic curves of the deterministic Bellman equation (2.3), we carry out the following 

additional constructions. Following the method presented in P], we consider the function 

sp (XT 4 == (2 Vz)-n (pt)-n/2 S S” (h, z) exp [- l$2$] dh (2.4) 

1 h - 5 / = [i (hj - “j)ql’* 
j=l 

Here p is a positive number, S’(X, Z) is the Bellman function of the deterministic 
problem ; the integration is carried out over all the values, - 00 < Li < + co, i = 

1 , -**7 n. From the properties of the fundamental solution of parabolic equations follow 

[8]: (a) sp (2, q) is an infinitely differentiable function of the Xi, i = 1, . . . , n for 

all l.~ > 0, (b) lim SP(z, z) = S’(Z, Z). For iach p + 0 we can find up E U on 

which PA 
m n m n 

(2.5) 

is reached. To uI* constructed in this manner there corresponds a certain field of trajec- 

tories of problem (2.1). (2.2) 
x = P (G Y) (2.6) 

Here c’(t, y) is a vector-valued function, y is an n-dimensional vector of arbitrary 
constants. In order to apply the above presented procedure in the general case. it is ne- 

cessary to introduce additional assumptions. We set p = 1 / v, v = 1, 2, 3, . . . . 
UP = &IV. 

Assumption 1. The condition 

p (ul’/ “, ul/“+l) --t 0, v--t ocl 

(p is the distance in an m-dimensional Euclidean space) is satisfied at each point (z, t). 

For each point (2, t) , by virtue of the closedness and boundedness of set U , from the 

Bolzano-Weierstrass theorem follows the existence of a subsequence vi, i = 1, 2 . . . . 
such that iim u1 ’ “. 1 exists. The uniqueness of this limit 

u* = ]im ul/‘i 
i-rm 

(2.7) 

follows from Assumption 1. 
It is necessary to note further, that ambiguity in the choice of the optimal control 

occurs, as a rule, not in the whole set of values of (x, 1). Thus, in the example considered 

earlier the control is defined uniquely on the set I z I = kr + 1. Let Qzi be the set of 

values of (x, 7) for which the optimal control u” is defined uniquely, a, be the set of 
those values of (t, r) for which the choice of the optimal control is not unique. 

Assumption 2. The vector U* defined by equality (2.7) in Qs coincides on the 

boundary of regions Q, and Q2 with the optimal control U” defined uniquely in 52,. 
As a result we make the following definition. 
Definition. let the conditions of Assumptions 1 and 2 be satisfied. The vector 

u* defined by equality (2.7) is called the synthesis of the optimal control for problem 
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(2.1). (2.2) in the region Q.,, i, e. 

The equations 

z = 5”(t, Y), Y = (Yi, . . . , Y,), pi = const 

specifying the trajectory field corresponding to control U* in Q2, and u0 in Q2, are 

called the optimal trajectory field of problem (2. I), (2.2) and the equations of the 

characteristic curves of the deterministic Bellman equation (2.3). 

We illustrate what we have said by the problem described in Example 1. The function 
so, being the solution of the deterministic problem has the form 

Is” (x, z) == 
1, (xIdkt+l 
0, (xI>kt-t-1 

Let us construct the function sp. According to (2.4) we obtain 

- 
S,p = (2 vnzuL)-l exp 

(x + kz C 1)2 

Ii 
1 - exp 

I (kb + 1 
- 

4cLr 
7 

Therefore, the value ul*, 1 up 1 < k, giving the maximum to the form L? SXi*, is deter- 

mined by the equality 
2111 7 uo -: --k, x>,O 

k, x<u 

by definition, the optimal trajectories of the problem, passing through the point (~0, t(l), 

have the form 
5 - 50 = k (t - TO), x0 >, 0 

x - zo = -k (T - TO), s<o, ‘to= T-to 

These same curves, by definition, are the characteristics of the deterministic Bellman 

equation, passing through the point (~0, TO). 

3, Conrtruction of the approximate 8olutfon. Suppose that we have 
found the optimal control synthesis u’(x, t) and the optimal trajectory field 

II: = L”(t, Y), Y ~= (Yi, . . . . Y,), Yi = const (3.1) 

of the deterministic problem (2.1). (2.2) and. by the same token, in accordance with 
Sect. 2 the characteristic curves of the deterministic Bellman equation (2.3) are defined. 
We assume that the condition 

(jet 11 a5j"tt7 Y) / &Ii II # 0 

is satisfied. Then, solving system (3.1) relative to Y, we obtain 

We seek the approximate solution of boundary-value problem (1.3) as a function of 
the value of the constants Yisuch that Yi = f’ (z, t) (i = 1, . . . , n), and of the values 
of t. We denote by S”(y) the solution of the deterministic Bellman equation (2.3) in 
the new variables (Y, 7) . By virtue of the definition of the characteristic curves of the 

optimal trajectories of the deterministic problem (2. I), (2.2) these curves possess the 
property that the function so retains its constant value along them. Consequently, the 
discontinuity surface A’\LL^, %) = 0 is necessarily the characteristic surface of the 
deterministic Bellman equation and is one of the optimal trajectories of problem (2.1). 
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(2.2) ; otherwise the characteristic curves would intersect the surface A” = 0 and the 

function 5’” would have a jump along these ctwes, which contradicts the definition of 
characteristic curves as optimal trajectories of the deterministic problem. 

Without loss of generality we can consider that the discontinuity surface A” = 0 

corresponds to values of the constants yi = 0 (i = 1, . . ., m), m < n. From what 

has been said it is clear that the solution of the deterministic problem can be written as 

2.7 (Y) = 
i 

So’(y), yi\<O (i”iy...7m) 

P(y), yi > 0 (i = 1, . . . ( m) 
(3.2) 

In (1.3) we set the control u equal to the u”-optimal control of the deterministic prob- 

lem (2. l), (2.2). We denote the corresponding solution of problem (1.3) with control 

u = U” by v(y, r). The desired function w” satisfies Eq. (1.3) with u = u” if 

(3.3) 

From the definition of the characteristics of the deterministic Eq. (1.3) it follows that 

$= 5 UOki aik$ j==i,...,n (3.4) 
k=l i=l 1 

Note. The surface y = f (2, t), y = (yi, . . . . y,), f = (fl, ..:, f”), as simple 
examples show, can have conic points. The values of the derivative ayj / dsi at the 

conic point are defined here and subsequently in such a way that identity (3.4) is satis- 
fied. 

Let us now consider the group of variables y,, . . . , y,(m < n) which. define the 

discontinuity surface of function 8” in (3.2) and introduce the new variables Zj = yj / 
E, j = 1, . . . . m. The remaining variables y’ = (Y,+~, . . . , yn) remain unchan- 
ged. Let us seek the approximate solution of Eq. (3.3) in the form 

w” = w0 + e wi + 0 (E2) (3.5) 

Substituting W”, represented in form (3. 5),into I& (3.3) and allowing for relations(3.4), 
we find that the functions w‘must satisfy the boundary-value problem 

0 
:i w1 =- %W& w3 (2, Y’, r) ]t=o = $ (2, y’) Izzo (3.6) 

i, s=1 

Further on we shall assume that ci8 (j, s = 1, . . . . m) are functions of the variables 

Y’ = (Y,+,, *** y/,), r. The function w1 must be chosen so as to satisfy the equality 

UT +G(z,y’,z;~~),w~(z,y’,~)~r=,,=O (3.7) 
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Here 
G (z, y’, z’; w’) := 

j=l s=m+1i, k&l 

Assume that the condition 

$ Cj8(Y‘,~)%&>0, A=(&, h )#O .*a, m 
j, s=l 

is satisfied. Then the original problem reduces to the solving of two boundary-value 
problems of m th-order parabolic equations ; here the number m is determined by that 
number of variables yi( i = 1, , . . , m) necessary to give the discontinuity surface of 
solution so of the deterministic Bellman equation. 

The solutio~ofbo~da~-value problems (3.6), (3.7) are written out explicitly f8]. 
Let us consider the matrix with elements 

ejs = s Cjs (y’, h) 0% 
0 

By eib (y’, r) we denote the elements of the matrix inverse to 11 ei, 11 and by E (y’, r) 

the determinant of matrix 11 ejs 11. In the variables z, y’, z the solution of the deter- 

ministic Bellman equation has the form S*(y) = So (e 2, 9’). Using this, the solution 
of problem (3.6) can be written as 

w0 - s S”(&h, L/)P(h - z,y’, z) dh (3.3) 

p (h - z, ZJ’, z) = (21x)-“l” 1 E I-‘/l exp ej’ (hj - zj) (h, - 2,) 
I 

The integration in (3.8) is carried out over all values of h = (h,, . . . . &,)-The solu- 

tion of bo~da~ -value problem (3.7) is given by the formula 

WI -_ ~~G(h,y',zl;wo)~(h--,y',~--l)d~d~' 
0 

Note. The method of constructing the fundamental solution, suggested by Levi [S], 

is used to solve boundary-value problems (3.6), (3.7) when the coefficients cj, are func- 
tions of the variables .z = (z,, . . ., z,).As a result the boundary-value problem is reduced 

to solving an integral equation of the second kind, which can be obtained by the method 
of successive approximations. 

The following assertion gives a notion of the structure of the approximate solution 
Til/“,l _--. w0 -I- FW 1. 

Assertion 1. Let the function S”(y) be thrice continuously differentiable out- 
side the discontinuity surface y, -= y, = . . . = y, = 0. Then for every E > 0 and 
z E [O, r] there exists a neighborhood S2,,z of the discontinuity surface of function 

so, outside which the inequalities 

I w” -S” 1 < ICE, 1 wyi3 - S,J < JC’E (i -= 1, . . . . m) 

K, K’ = const 
are valid. 

The proof of Assertion 1 relies on the properties of the fundamental solutions of para- 
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bolic equations [8, 93. 
Corollary. Outside set f;z,,_ , the function S”, being a solution of the determin- 

istic Bellman eq~tio~, can be ~sidered as the fiction w”. 

4, Error 08timots of ths approximate rotution WV = W* + 8~~. 

Nscerrary and rufficisnt condition8 for ths cofncidence of rhs 
~p~S~~~ control synt~eais for a system additively containing 
whfta nofss and that for the corre#po~di~~ deterministic systeml 
By ZA%~ E U we denote the control which gives the minimum to the form 

m n m ?a 

Here TV? =1 20” $- ar.$ is an approximate solution of the Bellman equation (1.3) 
with control u = U* co~es~nd~ng to the optimal deterministic problem. We in~odu~ 
the notation 

n, 

Lf.) = 

The following result is valid. 
Theorem 2, Let the twice-d~ffe~~tiable bounded action WC+ satisfy the equa- 

tion N (?P, W”+) + L fWOYf) = a” (s, t), w*e (2, 0) = 9 64 (4,2) 

(kC \c a@ (2, T) \< k”“, ke, KE = con%) 

and let 
&ix. t - u” = B”(x, z), @” := (QP, **‘, Pm? (4,3) 

(z&t* t is the control defined by equality (4. I), IL* is the optimal control for the deter- 
ministic problem (2. l), (2.2). Then, the i~eq~~ities 

HfB”, W”*t)<Q (4*4) 

T(k*+ C”)\c&- U7”*r\<TKE (4, S) 

are valid. Here &’ is a solution of the Bellman eq~tio~ (1.3). 63 is a constant such 
that 

H (P”, w”t “) > cc 

Proof. Let us first prove iriequalitv (4.4). Since H (z& e, IV+ “) < H (a’, W’;‘), 
because form W is fir-rear in ft we obtain 

w (i&s - u*, J.jF. 8) -_ H (P’, tV*c) < 0 

We write Eq. (3.1) as 

H (a*, SI + L (8) = 0, s (5, 01 =: 9 (a) 

Here U* is the optimal control for problem (I, 1). Since H* (u*, S) < H (LP, S), the 
i~eq~~~ Ii (~2, 5) + L (8) > 0 is satisfied. Sub~act~~g this inequality from (4.2), 
we have 

H (l&O, w”* t - 8) + L (Fiv”*C - S)\ccP(5, +fw*~ -8) iz=@==O 
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Consider the function 2 =:: W0.c - S $- K’z. The inequality 

H (no, Z) -I- L (2) < &r, z) - Kc < 0, 1 z 1 r__* =-_ 0 

is valid for it. Using the maximum principle for parabolic equations in an unbounded 
region [Q], we obtain 2 > 0. Hence it follows that 

s - W”?E 6 K% 
(4.6) 

On the other hand, 
H (u*, IV”> “) > H (z&l* E, IV’ “) 

Here IL:, E is the control defined by equality (4.1). From equality (4.3) follows the 

inequality 
H (u*, W”~ ‘) - H (B”, Mi”, “) > H (?P, w”7 “) 

Therefore, from (4.2) we have 

H (S”, W”*z) + I5 (W”~~) > *;‘(I, z) + H f8”, w”l? 

The inequality 

H (u*, 21) + L (2’) < k’ + Cc - H (BE, IV”,“) - a’(~, x) < 0 

~‘~~_o~zf), z~=S--_~~~---(~~+C~)Z 

is valid. Applying once more the maximum principle for parabolic equations, we obtain 

S - IV’.*& > (kr -+ Cc) r 

Hence from (4.6) follows the required estimate (4.5). 

Note. The result of Theorem 2 remains valid for systems of more general form 

cirldt -:= a (5, t) u + c (.G t) + b (G t) !4 

Here it is assumed that the elements of matrices a, b and c are bounded functions. 

The final-value functional f can grow as 1 x 1 --+ CO no faster than the function 

exp Id fr2 -k 1)], where d is some positive constant r = (zr9 + a2 -k . - - $ ~~a)‘:*. The 

latter conditions are required by the Theorem 9 of [9],on which the proof of Theorem 

2 is based. 
Corollary 1. Let the vector-valued function p (x, Z) be such that 0 > N (p, 

W”,t) > C E%,C = const. Then the estimate 

IS- &J”+ / < K’2, K’ = con& (4.7) 
is valid . 

In fact, by construction the function W”lE satisfies Eq. (3.3) to within terms of order 

0 (k?) ; therefore, J ~9 (5, z> / < X 82, K == const. Then estimate (4.7) is satis- 
fied with a constant fi” = (K + 1 C 1) ?‘. 

C or o 11 ar y 2. (Necessary and sufficient conditions for the coincidence of the opti- 
mal control synthesis for systems additively containing Gaussian white noise and that for 
the corresponding deterministic systems). The optimal control u” for the deterministic 
problem (2.1) with functional (1.2) coincides identically with the optimal control of the 

perturbed problem (1.1) with the same functional (1.2) if 
rho ~ r&1 (4.6) 

Here u1 E U is the control giving a minimum to the form 
rrlrl; H (u, W”) =-;- H (ul, W”) (4.91 
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w” is a solution of the boundary-value problem (3.3) 

H (u’, IV”) + L (Iv”) = 0, W” (z, 0) = ql (x) 

u” is the optimal control for the deterministic problem (2.1). 

Proof. Necessity. let ZL* be the optimal control for the perturbed problem(l.l) 
with functional (1.2), such that U* = u”. Then the Bellman function 5’ being a solution 

of boundary-value problem (1.3). identically equals W”, being a solution of problem 

(3.3). Consequently, the control u1 defined by equality (4.9) is such that u1 = u*. 
Hence it follows that u” = ul. 

Sufficiency. Let (4.8) be valid. Applying the result of Theorem 2 with a’ = 0, 
B’ = 0, we obtain that S = W”. Here S is a solution of boundary-value problem (1.3). 

Therefore, the control u1 defined by equality (4.9) coincides identically with the opti- 

mal control for problem (1.1). i.e. u1 = u*. Consequently, by virtue of (4.8) U* = u“. 

Q. E. D. 
Corollary 3, Let u“ # ~1. We consider a solution of the Bellman 

(1.3) with control ul, i.e. 

H (ul, Wl) + L (WI) = 0, Wl (5, 0) = I# (ix) 

Further, from function w1 we find in the same way as in (4.9) the control 

equation 

u2 etc. lJ 01. 
If at some %th step uk = uk+t, h t en the last equality is the necessary and sufficient 

condition for U* = uir. Here u* is the optimal control for the original problem (1.1). 
Example 2. Consider the system 

cPx/dP = IL + EC, x = (x1, zz), t E [o, T] 

u = @I, 4, I ~1 I d k,, I ~a I < kz 

(5 = (51~ 52) is a vector of independent Gaussian white noises of unit intensity). We are 

required to construct a control method maximizing the probability of hitting onto the 

set 1 x1 1 + 1 X-L 1 f 1 at the instant t = 2’ . We introduce the new variables yk = (T - 
t) xk + xk, k = 1, 2. Note that zk (7’) = yk (T), k = 1, 2.The original equations take 

the form 
dy/dt = (T - t) (u + EC), y = (yl, yz), u = (UIY @)Y 5 = (511 5:) 

The Bellman function of the deterministic problem is a simple indicator of the attain- 

ability set, taking the values 

s”= i, IIYlI--l~~/2l$_~lYZl-~~T~/2)\<1 

1 0 in the remaining cases 

We construct the function SP according to (2.4). From the results of Sect. 2 it follows 
that the optimal control for the deterministic problem is defined by the formula 

uiO zz 
1 

-ki, Yi>,O 
(i = 1,2) 

ki, Yi<O 

The optimal trajectories, being the characteristics of the deterministic Bellman equation, 
have the form 

ni = I Yi I - kiTz / 2 (t = I, 2) 

We introduce the new variables zi = Tli / e, T (i = i, 2). 
According to (3.6) the function w” satisfies the boundary-value problem 
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As follows from (3.7) the function lul is such that 

1 
w,l = - z2Aw’ 2 ’ wl , A=%+&. 

From the uniqueness of the Cauchy problem for the heat conduction equation it follows 

that ZI? = 0. We note that the derivatives of the functions rh, r~z with respect to the 

variables ~1, YZ at the points yr = 0, yz = 0 are to be understood in the sense indi- 

cated in Sect. 3. According to (3.8) the function zuo has the form 

W0 = (m3&2)-1 ,,,,$s,,,, exp~-~[I(~~-~1)2~~~3-~~‘“~jd~l’li”? 

Direct verification shows that the control u1 defined by formula (4.1) is such that 
assumption (4.8) is satisfied, namely, u’ = r~l. From Theorem 2 it follows that the lat- 

ter formula yields an approximate solution of the Bellman equation of the original prob- 

lem to within 0 (~2). 
The author thanks F. L. Chernous’ko for constant attention and for useful discussions. 
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